Strong Mobility in
Disordered Systems

Eli Ben-Naim

Los Alamos National Laboratory

with: Paul Krapivsky (Boston University)

E. Ben-Naim and P.L. Krapivsky, Phys. Rev. Lett. 102, 190602 (2009)
Talk, paper available from: http://cnls.lanl.gov/~ebn

Giant Fluctuations in Population Dynamics, Leiden, August 7, 2009


http://cnls.lanl.gov/~ebn
http://cnls.lanl.gov/~ebn

Plan

|. Model: diffusion of interacting particles in
disordered one-dimensional system

2. Motion of non-interacting particles in disorder

3. Motion on interacting particles in disorder



Disorder

* Disorder underlies many interesting phenomena

- Localization (Anderson 58)

- Glassiness & slow relaxation (Sherrington & Kirkpatrick 75, Parisi 79)

. ()
-  Frustration (Ramirez 94) /\
 |nfluence of disorder: 4 = ¥

- Well understood for non-interacting particles

- Open question for interacting particles (lee & ramakrishnan 85)

* De-localization of two interacting particles (shepeiyansiy 93)

Interplay between disorder and particle interaction



Model System

—_ |- @ —P - - - -

P S SR

e |nfinite one-dimensional lattice

* |dentical particles with concentration c
* Dynamics: particles move left and right with two rules:

(i) Disorder: random, uncorrelated bias at each site

1 _ ¢ with probability =
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(i) Interaction: via exclusion, one particle per site

Minimal model with disorder and interaction



Particle Dynamics
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* Pick a particle out of N randomly

e Say particle is located at site i.

(i) Disorder: site dependent, governs motion

= With probability p+(i) move to the right by one site
= With probability p (i)=1-p+(i) move to the left one site

(ii)Interaction: via exclusion

= Accept the move if new site is vacant
= Reject the move if new site is occupied
* Augment time by |/N

Monte Carlo Simulation Procedure



Parameters

* Two parameters: concentration c, disorder strength ¢
* Generalizes two “seminal” diffusion processes:

|. Sinai Diffusion: no interaction, ¢ — 0 Sinai 82

2. Single-File Diffusion: no disorder, ¢ — (0  Levitt 73

(i) Disorder is small
e <1

(ii)Concentration is finite

C= —
2



One Question

 Displacement of a particle =
* No overall bias, average displacement vanishes
() =0

* How does the variance grow with time!

0° = (z%) =7



2. Non-interacting Particles



Non-interacting particles
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Particle is trapped in a stochastic potential well

Uz) =Y [p4(i) — p— (i)

1=1
Potential well is a random walk

U ~ e\/x

Escape time is exponential with depth of well
t ~ eV ~eV?

Logarithmically slow dlsplacement

r ~ ¢ *(Int)

Sinai 83



Distribution of Displacements

* Scaled displacement

X

&= (Int)?

 Distribution is exactly known

FO=2Y (-1 (n+ ) e :w% (n+3

e
n=0

* Non-gaussian statistics

F(&) ~ exp | — const. x |¢] ]




Early time: random walk

lgnore biases

e =0
In each step
() = 0
(%) = 1
In ¢ steps: average and variance are additive
() = 0
(%) = ¢

Purely diffusive motion
o = t!/?



Two time regimes

When disorder is small, there are two time regimes
Early times: disorder is irrelevant, simple diffusion
Late times: disorder is relevant, particle trapped

Crossover obtained by matching two behaviors

t1/2 t < e 4
O v
e ?(Int)? t> e 2.

Without particle interactions:
disorder slows particles down



Numerical Simulations
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Monotonic dependence on disorder strength:

stronger disorder implies smaller displacement



3. Interacting Particles



Early times

 Disorder is irrelevant, problem reduces to
single file diffusion = simple exclusion process

e Particles motion is sub-diffusive Harris 63
Levitt 73
]_ 4 Alexander 78
O v t / van beijeren 83

 Observed in colloidal rings and biological channels

Bechinger 00
Lin 02
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Exclusion hinders motion of particles



interacting particles noninteracting particles

$1/4 +1/2

Exchange identities when two particles cross!



Heuristic Derivation

—
tl ® ® C N, =2

Q!gmux£§umngg N_ =0

c — 1

Dense limit

Particles move by exchanging position with vacancies
r =Ny —N_
Excess vacancies
N, — N_| ~ N2
Total number of vacancies over the diffusive length ¢!/2
N ~ (1 —¢)t'/?
Displacement
x ~ /4



Random Velocity Field
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Magnitude of velocity diminishes with length

Local biases lead to directed motion
bouchaud & georges 90



Intermediate times

Local biases exist, cause directed motion
Particle visits 0 = n, + n_ distinct sites in time ¢

Disorder is random, so there is a diffusive excess

A=|n,—n_|~ocl/?

Local drift velocity is proportional to excess
v~eAlo = v~eo U2

The displacement is super-diffusive

—1/2

o~vt~eto = o~ (et)?/3

With particle interactions:
disorder speeds particles up!



Late times

Interaction is irrelevant, problem reduces to sinai
diffusion

The exponential escape time is dominant

Imagine particles lines up to exit the cage

t ~eY replaced by t ~ ze?

Particles motion remains logarithmically slow

o~ e *(Int)”

Ultimate asymptotic behavior:
particles motion is logarithmic slow



Three time regimes

e FEarly times: interaction is relevant, sub-diffusion

* |ntermediate times: disorder & interaction both
relevant, super-diffusion

e [ate times: disorder relevant, caging
1/4 t< e85

o~ (et)?3 e8P <txe?
e ?(Int)? t>e 2.

Small disorder:
mobility is enhanced over a long period



Three time regimes

e %(Int)?

t1/2
no interaction

disorder 1174

Interaction
+ disorder

Interaction
no disorder



Can we ignore the cage at
intermediate times!

* Of course, the hopping time is of order one
* The escape time is appreciable when
t~exp(U) = U>»>1 = e/z>1

* The cage is relevant only at late times

xr > €2

Yes, we can (ignore the cage)!



Heuristic argument does
not utilize particle interactions!

* Therefore, super-diffusive transport must be
relevant for noninteracting particles!

* However, the diffusive transport overwhelms the
super-diffusive transport

tY2 > (et)?®  for  t< et

Noninteracting particles:
Small convective correction exists, but is irrelevant



Early and intermediate time behavior

for a weak disorder
3
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Qualitative and quantitative agreement
with scaling theory



Early and intermediate time behavior
for two different weak disorders
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Universal scaling function for the displacement



Late time behavior for
a moderate disorder
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Suggests that interaction becomes irrelevant



Late time behavior

Ratio of rms displacement in
Nonlinteracting (NI) and Interacting (l) particles
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Further evidence that disorder becomes irrelevant



Early and intermediate time behavior
for moderate disorders
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|. Mobility is enhanced at all disorder strengths
2. Displacement is not monotonic with disorder
3. Eventually, no-disorder catches up

4. But why is the crossover time so large?



Giant crossover time

® Compare ultimate asymptotic behaviors with interaction
® VWithout disorder
T~ t1/4
® With small disorder
o~ e “(Int)”

® [he crossover time is astronomical

t~~ e 8

In practice, small disorder generates stronger transport in
an interacting particle system



Generalizations

\/ Different concentrations
\/Disorder with variable strengths

® Synchronous dynamics = parallel updates

Qualitative behavior appears to be robust



Summary

* Without interactions: disorder slows particles down

* With interactions: disorder speeds particles up, at least
for a very long time

- Early times: sub-diffusive displacements
- Intermediate times: super-diffusive displacement

- Late times: logarithmically slow displacement

* Intricate interplay between interaction and disorder



Outlook

® Beyond scaling theory: a mathematical theory
® Distribution of displacements

® Different types of disorder

® Self-averaging!?

® Experiments: colloids, microfluids, granular,
biological channels

® Disorder as a mechanism to control transport
In matter



Formally

Particular state of the system
) = |---001101001 - -

Probabilistic description

o(t) = Y Py, )y

Y

3t|¢> — £|¢>

Evolution operator

L = Z [lia};_lai +7;a
Formal solution

(1)) = e~ [¢(0))

Time evolution
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Experiments: enhanced diffusion

Modulated (irregular) quasi-1D colloidal channel
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o ~ t“ a > 0.3

Qualitatively similar behavior

Coupier, Saint Jean, Guthman 07



